
1

Examples for the row space in situ method

These notes supply examples for the row space in situ method for solving
Ax = b, following the preprint by Zimmer[1]. The solutions will be based on
this data:

A =

 0 −3i 0
2i 1 −1
4i 2− 3i −2

 , b =

 1
2i

1 + 4i


By inspection, m = n = 3. Also, A has rank 2, by design.

Two equivalent approaches

In the accompanying paper, two related approaches were presented for com-
puting the solution, one without G (a generalized inverse) and one with. For
convenience, here are the formulae for the approach without G:

[A|b]→ [A′|b′]
xp = (A′)∗b′

xh = Py

P = 1n − (A′)∗A′

Also, the solution that uses G is formulated as

[A|1]→ [A′|M]

G = (A′)∗M

xp = Gb

xh = Py

P = 1n −GA

In both cases y is an arbitrary element of C3.

The orthonormalization steps

This section explicitly shows the steps to orthonormalize A. It follows a
modified Gram Schmidt approach. In the first approach (i.e., without G),
these row operations would be applied to [A|b]; in the second approach, they’d
be applied to [A|1]. In neither case is it necessary to explicitly construct

2

the matrices Mi. They are shown here only for pedagogical purposes. The
operations on each row ri are:

step 1: r1 ← r1/‖r1‖ = r1/3

step 2: r2 ← r2 − 〈r2, r1〉r1 = r2 − (i)r1

step 3: r3 ← r3 − 〈r3, r1〉r1 = r3 − (3 + 2i)r1

step 4: r2 ← r2/‖r2‖ = r2/
√

5

step 5: r3 ← r3 − 〈r3, r2〉r2 = r3 − (2
√

5)r2

where 〈v, w〉 = w∗v and its computation only involves the portion of the row
in A. Note that there isn’t a step for the normalization of r3 since in this
case its norm is 0. The corresponding matrices for these steps are:

M = M5M4M3M2M1

M1 =

1
3

0 0
0 1 0
0 0 1

 , M2 =

 1 0 0
−i 1 0
0 0 1

 , M3 =

 1 0 0
0 1 0

−(3 + 2i) 0 1

 ,
M4 =

1 0 0

0
√
5
5

0
0 0 1

 , M5 =

1 0 0
0 1 0

0 −2
√

5 1


The results: without G

The first approach, which involves orthonormalizing the augmented matrix
[A|b], yields

[A′|b′] =

 0 −i 0 | 1
3

2√
5
i 0 − 1√

5
|
√
5
3
i

0 0 0 | 0



xp = (A′)∗b′ =

0 − 2√
5
i 0

i 0 0
0 − 1√

5
0

 1
3√
5
3
i

0

 =
1

3

 2
i
−i


The null space projection operator is

P = I3 − (A′)∗A′ =
1

5

 1 0 −2i
0 0 0
2i 0 4



3

As noted earlier, the homogeneous solution is formed as xh = Py, for arbi-
trary y. Setting y = (y1, y2, y3)

T , where each entry is arbitrary, the result
is

xh =
1

5
(y1 − 2iy3)

 1
0
2i

 = α

 1
0
2i


where α is an arbitrary element in C. Noteworthy is that the nullity of A
is one, which corresponds to the above parametrization of xh requiring only
one vector. The reader should verify that Axp = b and Axh = 0.

The results: with G

The same data for A,b is used here as was used in the previous section.
Also, the same orthonormalization steps are implemented, except now they
are done on [A|1], as opposed to [A|b]. As a reminder, it is not necessary
to explicitly construct the matrices Ms for the orthonormalization steps; it
is only necessary to implement those row operations. The final A′ and M
matrices are found after step 5 to be:

[A′|M] =

 0 −i 0 | 1
3

0 0
2√
5
i 0 − 1√

5
| −

√
5

15
i
√
5
5

0

0 0 0 | −1 −2 1


The generalized inverse G is

G = (A′)∗M =
1

15

−2 −6i 0
5i 0 0
i −3 0


The reader is encouraged to verify that computing

xp = Gb

P = I3 −GA

produces the same results for xp, P as found in the previous section.

Online case

In the following, the same data is used to illustrate the online case for the first
variation. Because the data (for A,b) arrives one row at a time, the version

4

of orthonormalization used is classical Gram-Schmidt (CGS). In particular
the order of row operations will be:

Row 1 arrives

step 1: r1 ← r1/3

Row 2 arrives

step 2: r2 ← r2 − (i)r1

step 3: r2 ← r2/
√

5

Row 3 arrives

step 4: r3 ← r3 − (3 + 2i)r1

step 5: r3 ← r3 − (2
√

5)r2

Note that in this case row # 3 isn’t normalized, as its norm is zero. The
pattern to be aware of here is that after the i-th step, the i-th row will no
longer change. This means that it can be used toward forming the solution x.
Thus, if the data is slow to arrive, steps 1 and 2 can be done while waiting.
When the final row arrives (i.e., row 3), the last bit of computation can then
be done (i.e., steps 4 and 5). This is why it’s called an online computation.
With this in mind, the solution is rewritten using a column-row expansion

xp = (A′)∗b′ =
m∑
i=1

x(i)p

where
x(i)p = Coli[(A

′)∗] b′i

and Coli signifies the i-th column.
In the expressions below, the ”input data” denotes the data that has just

arrived. (Double-hyphens in a matrix mean that no data has been entered
there yet.) Also, the ”intermediate results” are how A, b, and xp appear
following the i-th update.

i = 1 —————————————–
input data:

Row1(A) = (0,−3i, 0)

Row1(b) = (1)

5

intermediate results:

A′ =

 0 −i 0
−− −− −−
−− −− −−

 , b′ =

 1
3

−−
−−

 ,

x(1)p = Col1[(A
′)∗] b′1 =

 0
1
3
i

0



i = 2 —————————————–
input data:

Row2(A) = (2i, 1,−1)

Row2(b) = (2i)

intermediate results:

A′ =

 0 −i 0
2
√
5

5
i 0 −

√
5
5

−− −− −−

 , b′ =

 1
3√
5
3
i

−−

 ,

x(2)p = Col2[(A
′)∗] b′2 =

 2
3

0
−1

3
i



i = 3 —————————————–
input data:

Row3(A) = (4i, 2− 3i,−2)

Row3(b) = (1 + 4i)

intermediate results:

A′ =

 0 −i 0
2
√
5

5
i 0 −

√
5
5

0 0 0

 , b′ =

 1
3√
5
3
i

0

 ,

REFERENCES 6

x(3)p = Col3[(A
′)∗] b′3 =

0
0
0


The particular solution follows from adding all the updates, giving

xp = x(1)p + x(2)p + x(3)p =
1

3

 2
i
−i


which is the same as found earlier. As a final point, note that it is trivial
to repeat the (CGS) orthonormalization step for each i during this online
computation. Doing so would benefit its numerical accuracy.

References

[1] M.F. Zimmer, Two direct solvers for a system of linear equations. arXiv
preprint, arXiv:1611.06633, 2020.

Michael Zimmer
zim@neomath.com

